手机浏览器扫描二维码访问
2014年,人工智能领域正处于深度学习的快速发展时期,但在训练深层神经网络时,仍存在一些无法绕过的核心难题,其中“梯度消失”和“梯度爆炸”问题尤其突出。
当马库斯和林枫的对话逐渐转向这些人工智能瓶颈时,他们自然聊到了这个话题。
对于人工智能涉及到的梯度消失和梯度爆炸这个问题,对于前世就从事人工智能方面工作的林枫来说,他自然是不陌生。
梯度消失和梯度爆炸是神经网络训练中常见的问题。
了解梯度消失和梯度爆炸首先要了解神经网络。
简单说,神经网络是一种模仿人脑工作原理的计算模型。
它由很多“神经元”组成,这些神经元分成多层,数据会从一层传到另一层,最终得到一个结果。
训练神经网络的过程就是不断调整这些神经元之间的“连接强度”,让网络的输出越来越接近我们想要的结果。
为了调整神经网络中的这些连接强度,我们需要用到一种叫“梯度”的东西。
简单来说,梯度就是用来指引我们“往哪里走”的方向,就像你爬山时要知道往哪边是上坡、哪边是下坡。
我们通过“梯度”来知道哪些参数需要调整,从而让网络的表现变得更好。
那“梯度消失”和“梯度爆炸”又是什么呢?
假设你在玩一个滑滑梯,当你站在滑梯的最高处,往下滑时,你能很快感受到速度在增加,因为坡度很大。
但是,如果滑到快要到底部的地方,坡度变得很小,你几乎就感觉不到滑动的速度了。
这里的“坡度”就像是“梯度”——当坡度变小,滑动的速度也变小。
在神经网络中,类似的事情也会发生。
如果我们给网络很多层,它们之间的梯度会越来越小,传到前面几层时,梯度几乎“消失”了。这就是“梯度消失”问题。
梯度太小,无法有效调整那些神经元的连接强度,网络的训练就会变得非常困难。
想象你在爬一个大山,山的坡度越来越平,最终你几乎感受不到自己在上升了,这时你很难再判断该怎么继续往上爬。
在神经网络里,梯度消失的问题就是这种感觉,网络不知道该如何继续改进。
而梯度爆炸又是另外的一个极端。
假设这次你站在一座非常陡的悬崖边,一不小心就滚下去了!
因为坡度太陡了,你的速度变得非常快,失控了。
在神经网络中,这种情况也被称为“梯度爆炸”
假千金撬了男主他墙角 鞠怡以的神影 百岁躺进棺材中,让我攻略女帝 琪亚娜的万界之旅 和闺蜜穿七零,带着婆婆一起离 我携山河画卷,穿越古今追光 你帅,我靓,咱俩日子过得旺 被道侣分手后,系统终于来了! 我在快穿游戏里玩儿嗨了 穿越后我在异世界娱乐圈爆红 重生之都市极品天尊 神耳偷仙,诡变求存 春花秋月李三妮 碎婚 红颜情殇之宫阙风云 倚天:我从双修开始修炼成仙 一穿越就成断案高手 老婆请转身沈浪苏妙涵 血虹剑 妖月悬空,开局觉醒双星核
馅饼,说好的豪门风云世家恩怨呢?有。自己看书!馅饼,说好的江湖快意儿女情仇呢?有。自己看书!馅饼,说好的纨绔嚣张衙内跋扈呢?有。自己看书!馅饼,说好的狗血装逼扮猪吃虎呢?有。自己看书!馅饼,说好的医卜星象天机莫测呢?嚓,你有完没完?有,都有!不会自己看书啊?好,我看书去了,看得不爽,削你!那看得爽了呢?要不要给票?...
脆皮大学生李友仁玩着一款生存游戏时,一道绿光在头顶浮现,刺眼的绿光让李友仁闭紧双眼,感受到刺眼的光芒消失,李友仁已经来到了1958年。李友仁在这红火的年代面对历史的浪潮,他会如何过好自己的小日子呢。...
绝美战地女军医禁欲军官八零先婚后爱双洁沈稚欢惨死在除夕夜,家中遇险,偏心的父母护着姐姐,毫不犹豫把她推了出去!再一睁眼,她重回19岁那年,姐姐非要换亲妈!谢澜深受了重伤活不长,让妹妹守寡,我替她去顾家,我愿意当后妈!沈稚欢反手拿起棍棒,当场暴打全家!想换亲?先断亲!拿钱!签!临死前家人丑恶的嘴脸还...
老公小青梅养的狗害两岁女儿得了狂犬病送医。渣老公却为了救他的小青梅和三只狗,延误了救女儿的黄金时间最终惨死医院。同一时间,婆婆的不看管,致使家里的大宝小宝溺死游泳池中。安抒抒痛失三个孩子,一夜白了头。从此,她褪下过去无用的温婉懂事,将自己磨炼成锋利见血的利刃,一刀一刀将恶人凌迟。葬礼上,缺失父爱的孩子们,到死也没等...
音乐影视绘画书法雕塑文学你都懂?略知一二。都会一点的意思?嗯,都会亿点的意思。怀揣系统,靠艺术征服世界,成为各界人士顶礼膜拜的无冕之王。...
...